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Abstract

Many medical studies deal with the assessment of the
prognostic or diagnostic power of some particular test
with respect to some particular medical condition. How-
ever, even though a test is deemed to be powerful in this
respect, the test may not be strictly needed to perform
for everyone. If the test is costly or invasive, this issue
is ofparticular interest. This paper presents a methodol-
ogy based on rough set theory and Boolean reasoning that
can be used to identify those patients for whom perform-
ing the test is redundant or superfluous. Furthermore,
the methodology enables one to automatically construct
a set of descriptive and minimal if-then rules that model
the patient group in need of the test. A reanalysis of a
previously published real-world dataset of patients with
chest pain [1] is used as a case study.

INTRODUCTION

Exercise testing provides important diagnostic and
prognostic information in patients with known or sus-
pected coronary artery disease. However, a large por-
tion of patients with chest pain may not be able to ex-
ercise adequately, thus reducing the detection of coro-
nary artery disease. For such patients, alternative stress
modalities have to be used. In a recently published
study [1], a group of patients with chest pain under-
went a dobutamine-atropine technetium-99m sestamibi
single-photon emission computed tomography (SPECT)
scintigraphic study. Using multivariate logistic regres-
sion, it was found that the single most important inde-
pendent predictor for future hard cardiac events (car-
diac death or nonfatal myocardial infarction) was an
abnormal scan pattern. However, performing a scinti-
graphic scan is a relatively expensive procedure, and
may for some patients not really be fully necessary as
knowledge of the outcome of the scan may be redundant
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with respect to making a prognosis. If one through con-
sidering combinations of more readily available param-
eters could make the same decisions, one could thereby
minimize the number of scans acquired and hence po-
tentially cut both costs and use of resources. This pa-
per proposes a procedure for doing this, using elements
from rough set theory [3] coupled with Boolean reason-
ing techniques [2].
Rough set theory deals with the approximation of

sets, e.g. the set of all patients that will either die or
have a myocardial infarction within a certain follow-up
period, or the set of all patients susceptible to a cer-
tain treatment. The same group of patients as in [1]
have been reanalyzed using a rough set approach. In an
identification step, the framework is used to pinpoint ex-
actly which patients where knowledge of the outcome of
the scan is strictly required with regards to predicting
future hard cardiac events. Furthermore, in a subse-
quent modelling step one can extract minimal if-then
decision rules that describe how to identify this patient
group.

PRELIMINARIES

An information system is a pair A = (U, A), where U
is a non-empty finite set called the universe and A is a
non-empty finite set of attributes such that a: U -+ Va
for every a E A. The set Va is called the value set of
a. A decision table is any information system of the
form A = (U, A U {d}), where d 0 A is a distinguished
attribute called the decision attribute. The elements of
A are called condition attributes.

Let A = (U, A) be an information system. For any
B C A is associated an equivalence relation IND(B) as
defined below. IND(B) is called the B-indiscernibility
relation.

IND(B) = {(x, x') EU2 Va E B, a(x) = a(x')}
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A reduct is a minimal set of attributes B C A such
that IND(B) = IND(A), i.e. a minimal attribute sub-
set that preserves the partitioning of the universe. The
set of all reducts of an information system A is denoted
RED(A).

Let A be information system with n objects. The
discernibility matrix of A is a symmetric n x n matrix
with entries cij as given below.

ci3= {a E A I a(xi)# a(xj)} for i = 1, ..., n

A discernibility function fA for an information system
A is a Boolean function ofm Boolean v4riables a*, ..., a*
(corresponding to the attributes a,,..., am) defined as
below, where c|j = {a* a E cij}. The set of all prime
implicants of fA determines the set of all reducts of A.

fA(a*,...,a*)=A{Vctj 1.J.i.n,ci3#0}

Let A = (U, A) be an information system and let
B C A and X C U. We can approximate X using only
the information contained in B by constructing the B-
lower and B-upper approximations of X, denoted BX
and BX respectively, as defined under.

BX= {I [X]B C X} BX ={XI [X]BnX# 0}

The objects in BX are certain members of X, while
the objects in BX are possible members of X. The set
BX -BX is called the B-boundary region of X, and
consists of those objects that we cannot decisively clas-
sify into X. The set U - BX is called the B-outside
region of X, and consists of those objects that cer-
tainly do not belong to X. A set is said to be rough
(resp. crisp) if the boundary region is non-empty (resp.
empty).
The rough membership function pB (x) defined below

[4] quantifies the degree of relative overlap between the
set X and the equivalence class to which x belongs.
The rough membership function can be interpreted as
a frequency-based estimate of Pr(x E X x, B).

p4(X) -I[X]Bnlxi[oPX()=1] n E [0,1]I[X]BI
The formulas for the lower and upper set approxima-

tions can readily be generalized to some arbitrary level
of precision ir E [2, 1] by means of the rough member-
ship function [7], as shown below. Possible ties in the
case of ir = 0.5 can be resolved by assigning the objects
in question to the interior of the set. Note that the lower
and upper approximations as originally formulated are
obtained as a special case with r = 1.0.

Bf,X = {x pB(X) > ir) B,rX = {X B(X) > 1-7r}

DATA MATERIAL

Table 1 summarizes the contents of the decision table
A = (U,A U {d}). There are 418 objects in the uni-
verse U, with the heavily skewed DEATHMI attribute
as the decision attribute d and all other attributes defin-
ing the set of condition attributes A. All attributes
are binary-valued, signifying the absence or presence of
some feature. The cut-off values used for discretization
of the inherently numerically valued attributes were de-
cided upon externally by medical experts. There were
no missing values in the data.
The 418 objects are all patients with chest pain, re-

ferred for the evaluation of suspected myocardial is-
chemia. The data in the decision table is largely the
same as having been previously analyzed in [1], with
some exceptions. 26 of the 418 patients with early
elective coronary revascularization within 60 days af-
ter stress testing were excluded from the multivariate
statistical analysis performed in [1]. None of these sus-
tained a major cardiac event before coronary revascu-
larization. The 26 patients could not be excluded from
the present analysis, due to lack of knowledge of exactly
which patients they were.
The attributes listed in Table 1 and used in the

present analysis are a subset of those used in [1].
The endpoint is the same, reporting any subsequent
hard cardiac events within a certain follow-up period.
The APSTRESS and STT attributes were acquired by
means of the dobutamine-atropine stress test, while the
SCANABN data originates from the scintigraphic scan.
All other attributes were selected primarily due to their
simplicity and ease of acquisition. For a more detailed
description of the patient group and the precise seman-
tics of each attribute, see [1].

METHODOLOGY

Identification

Let X = {x DEATHMI(x) = 1}, and let A = (U,A)
refer to the decision table described in the previous sec-
tion. The set X thus defines the patients who either died
or had a heart attack within the follow-up period. In
the identification stage, rough approximations of X are
calculated using various attribute sets of interest. Of
interest is then to identify which patients that, when
selected attributes (most notably the SCANABN at-
tribute) are excluded, migrate into the boundary region
from either the lower approximation or the outside re-
gion. This corresponds to those patients where knowl-
edge of the removed attributes is strictly required for
identifiability. For all other patients, acquiring the ad-
ditional knowledge will have no effect with respect to
the classification into X. Either because this knowledge
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[Attribute !Description 1 of Os of ls Attribute [Description [!ofOs %ofis
AGE Over 70 years old? 80.9% 19.1% GENDER Male? 43.1% 56.9%
OLDMI Prior infarction? 51.0% 49.0% HFMED History of dec. cordis? 80.4% 19.6%
HYPERT Hypertension? 57.2% 42.8% ANGP History of angina? 75.1% 24.9%
DM Diabetes? 85.6% 14.4% APSTRESS Angina during stress? 72.2% 27.8%
SMOK Smoking? 72.0% 28.0% STT ST-T changes? 68.9% 31.1%
CHOL Hypercholesterolemia? 74.9% 25.1% SCANABN Abnormal scan? 31.6% 68.4%
DEATHMI Cardiac death or inf.? 88.8% 11.2% ||

Table 1: Distribution summary of the 418 patients in decision table A.

is superfluous (i.e., we already have enough information
to classify them within a reasonable degree of certainty),
or because it won't help us anyway (i.e., we still won't
be able to classify them within a reasonable degree of
certainty even if we perform the additional tests). Fig-
ure 1 displays this graphically. The grayed area denotes
the set of migrating patients, when attributes C C B
are removed from B C A.
The rough approximations can be made with varying

degrees of precision 7r. To evaluate the approximations,
we define sensitivity, specificity and accuracy as the fol-
lowing quantities for any B C A:

Sensitivity(B, 7r, X)

Specificity(B, ir, X)

Accuracy (B, 7r, X)

- jL7xnxIx'
l(U - B7X) n (u -X)l

IU-xl
= Sensitivity(B, 7r, X) +

lU-x i
.Specificity(B, 7r, X)

Modelling
Let A be as previously defined and let C C B C A.
The set of migrating patients can formally be defined
as follows:

Boundary(B, r, X) = BJrX-B,rX
Migrate(B, C, ir, X) = Boundary(B - C, 7r, X) n

(U - Boundary(B, 7r, X))

If a patient is a member of the migration set, this
means that we cannot classify the patient within a rea-
sonable degree of certainty without additional knowl-
edge that might help discern him/her. Relating to Fig-
ure 1, this constitutes the union of the grayed areas.
In our case, we are especially interested in the instance
where C = {SCANABN} C B = A.

Let X as previously denote the set of patients with
a future hard cardiac event. Define a decision table 4

with condition attributes A -{SCANABN}, and a new
decision attribute d' defined as:

dl Yes if xE Migrate(A, {SCANABN}, ir, X)
7()=X { No otherwise

The set X' = {x d' (x) = Yes} obviously consti-
tutes the set of patients for whom knowledge of the
SCANABN attribute is strictly needed in order to clas-
sify them. A model of this set in the form of minimal
if-then rules can be automatically extracted from4 us-
ing several techniques [5]. One straightforward scheme
is the following, typically employed in a cross-validation
setting:

1. Compute the set of reducts RED(4).
2. Filter away "weak" reducts.
3. Overlay each reduct over 4 to produce a set of

decision rules.
4. Filter away "weak" rules.

In practice, it is typically desirable to extract short,
approximate rules in order to reveal more general pat-
terns in the data. To this end, dynamic reducts [6] are
often computed in the first step. Several criteria may
be envisioned in the intermediate filtering steps, e.g. re-
moving reducts/rules with a weak support basis or with
a cost associated with them exceeding some threshold.

RESULTS

Table 2 lists the results of performing rough approxi-
mations of X (for various levels of precision) with and
without some attributes (most notably SCANABN) re-
moved. The numbers indicate the cardinalities of the
approximation regions in question. The drops in sensi-
tivity and specificity can be attributed to exactly those
patients that migrate into the boundary region when
the attributes are removed. Objects in the boundary
region are refrained from being classified. Note that a
precision level of 0.5 amounts to always selecting the
most probable category, and hence by definition results
in the empty boundary region.
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Upper approx. with B

Upper approx. with B-C

x

Lower approx. with B

Lower approx. with B-C

U

Figure 1: Rough approximations.

Table 3: Approximating X1%0 with
and 7r' E {1.0, 0.9, 0.8, 0.5}.

A -{SCANABN}

The set X' is by definition rough without the SCAN-
ABN attribute, and crisp with. One can then proceed
to perform a rough metaanalysis of X', for various sec-

ondary precision levels rr'. Table 3 summarizes a meta-
analysis of X10.
To get a feel for the type of rules that the rule min-

ing process generates, some actual rules (and their sup-

ports/probabilities) from a preliminary extraction ses-

sion are given below. In real life, the full set of rules
would be interpreted by a medical expert.

Ri: OLDMI(0) A HYPERT(0) A GENDER(1)
-+ Migrate(No) [52 objects (1.0)]

Rj: AGE(1) A GENDER(0) A STT(1) A ANGP(0)
-+ Migrate(Yes) [2 objects (1.0)]

Rk: AGE(0) A HYPERT(0) A DM(0) A SMOK(0) A
GENDER(1) A APSTRESS(0) A HFMED(O)
-4 Migrate(No) [18 objects (0.818)] V

Migrate(Yes) [4 objects (0.182)]

DISCUSSION

Since the dataset is not exactly identical as the one used
in the statistical analysis in [1], results between the two
are not directly comparable. Moreover, the foci of the
two analyses are different in nature. Whereas the sta-
tistical analysis sought to assess the prognostic power of
the nuclear scan procedure, the rough set analysis seeks

to identify those patients for whom the procedure will
presumably be of no help, and to construct a minimal
description of these.
As can be read from Table 2, excluding the SCAN-

ABN attribute only results in a minor drop in sensitiv-
ity. Since so few patients migrate into the boundary
region, this seems to suggest that there is a substan-
tial potential gain in considering combinations of more
easily available parameters in lieu of performing a scan.

But even though the number of migrating patients is
low, what matters in practice is our ability to identify
them. If the upper approximation of the set of migrating
patients had been extremely large, nothing much would
have been gained. However, the upper approximation of
the migrating set (even for the most conservative values
of ir and 7r') counts no more than 35 people, as can be
read from Table 3. In practice, one would presumably
send all patients in the upper approximation to acquire
a scan. If so, the fact that the lower approximation in
Table 3 is so small (and the sensitivity hence so low)
may not be an important issue. Also evident from Ta-
ble 2 is that the drop in both sensitivity and specificity is
substantial when all stress test information is removed.
This confirms the already known fact that stress testing
yields valuable prognostic information.
The rough set methodology offers a kind of data com-

pression both in the number of objects (via equivalence
classes) and the number of attributes (via reducts),
where the degree of loss can be controlled. Furthermore,
the automatically extracted if-then rules offer a means

of explanation, in contrast to many black-box methods.
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Migrates from
outside region

Migrates from
lower approx.

Approx. region 7r' E {1.0, 0.9, 0.8} j 7r/ = 0.5

Upper approx. 35 25

Lower approx. 2 25

Boundary region 33 0

Outside region 383 393

Sensitivity 10.5% (2/19) 84.2% (16/19)
Specificity 96.0% (383/399) 97.7% (390/399)
Accuracy 92.1% (385/418) 97.1% (406/418)



APSTRESS
ir Approx. region A A -SCANABN} A- STT

I_________{ j {SCANABN}IA - SCANABN
Upper approx. 78 96 163

Lower approx. 29 28 19

Boundary region 49 68 144

1.0 Outside region 340 322 255

Sensitivity 61.7% (29/47) 59.6% (28/47) 40.4% (19/47)
Specificity 91.6% (340/371) 86.8% (322/371) 68.7% (255/371)
Accuracy 88.3% (369/418) 83.7% (350/418) 65.6% (274/418)

Upper approx. 78 79 92

Lower approx. 29 28 19

Boundary region 49 51 73

0.9 Outside region 340 339 326

Sensitivity 61.7% (29/47) 59.6% (28/47) 40.4% (19/47)
Specificity 91.6% (340/371) 91.1% (338/371) 86.5% (321/371)

Accuracy 88.3% (369/418) 87.6% (366/418) 81.3% (340/418)

Upper approx. 65 67 83

Lower approx. 29 28 19
Boundary region 36 39 64

0.8 Outside region 353 351 335

Sensitivity 61.7% (29/47) 59.6% (28/47) 40.4% (19/47)
Specificity 94.6% (351/371) 93.8% (348/371) 88.7% (329/371)

Accuracy 90.9% (380/418) 90.0% (376/418) 83.3% (348/418)

Upper approx. 52 47 32
Lower approx. 52 47 32

Boundary region 0 0 0

0.5 Outside region 366 371 386

Sensitivity 87.2% (41/47) 80.9% (38/47) 55.3% (26/47)
Specificity 97.0% (360/371) 97.6% (362/371) 98.4% (365/371)
Accuracy 95.9% (401/418) 95.7% (400/418) 93.5% (391/418)

Table 2: Approximating X with different attribute sets and 7r E {1.0, 0.9, 0.8, 0.5}.
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